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This paper presents a simple model for the propagation of small-amplitude vibrations in a granular
material. In this model, the grains are taken to be spherical balls that interact via linear springs. The
positional disorder in the real system is ignored and the particles are placed on the vertices of a square
lattice. The only disorder in the system comes from a random distribution of the spring constants.
Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in
measurements of sound propagation in a granular system. In order to understand this behavior, the role
of the resonance modes of the system is investigated. Finally, this simple model is generalized to include
relaxation behavior in the force network—a behavior which is also seen in real granular materials. This
model gives quantitative agreement with experimental observations of relaxation.

PACS number(s): 43.40.+s, 63.50.+x, 05.40.+j, 46.10.+z

I. INTRODUCTION

Understanding the properties of granular materials
presents a difficult challenge to condensed-matter science
[1]. A fundamental property of any material is its
response to small-amplitude vibrations. For the case of
solids, the behavior of the system is characterized by the
phonon spectrum. These elementary excitations for per-
fect crystals are well understood, but for disordered sys-
tems, the situation is not so clear. When disorder is
present, localization of these excitation can occur [2], and
while much progress has been made in understanding the
phenomena of localization, there are still many funda-
mental properties that remain a mystery [3].

While there have been many studies of the localized
modes in disordered systems [4—6], there has been less at-
tention paid to the response of these systems to a periodic
driving force [7]. Generally speaking, for a uniform
periodically driven linear system in the long-time limit,
the frequency of oscillation is that of the forcing [8]. As
the frequency of the driver goes through a resonant fre-
quency, the amplitude of the motion is increased, and the
oscillations take on the character of the corresponding
normal mode. Does this picture reman for the case of a
disordered granular material which has complicated non-
linear interparticle interactions? In these systems, there
is known to be a network of contact forces with a com-
plex structure. The phenomena of arching suggest that
this system is supported by a small fraction of grains
which have a high concentration of stress, while most of
the particles remain in loose contact [9]. The response of
this system to driving may then depend wholly on the
structure of this network where the stress is highly con-
centrated.

In this paper, I discuss a model system of balls and
springs that can reproduce many of the vibrational prop-
erties of a real granular system. The numerical results
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that come from this model will be compared with the re-
sults from a beautiful set of experiments performed by
Liu and Nagel in which they measured the response of a
single “grain of sand” to an external driving force [10]. "I
describe briefly these experiments and summarize the im-
portant results. The experimental apparatus consisted of
a rigid box filled with glass beads of diameter d =0.5 cm.
The box itself was 28 X28 cm? and was filled with beads
up to heights of 8—15 cm. The upper layer of the bead
pack was a free surface. An aluminum disk that was at-
tached to an external speaker was placed at one end of
the box. The speaker could be driven with varying fre-
quencies and amplitudes. Inside the bead pack was an
accelerometer which was roughly the size of one bead.
This device was sensitive only to horizontal accelerations,
and was unaffected by sound waves propagating through
the surrounding air. Since this detector was comparable
to the size of a bead, it is effectively measuring the
motion of a single particle under the action of the driving
vibration. The motion of the aluminum disk was also
monitored with an accelerometer attached directly to it.

The disk was driven with an acceleration of the form
Asin(wt) and the detector was found to oscillate as
A (t)sin[wt +¢(2)], where 4,(t) and @(t) were the detec-
tor amplitude and phase shift, respectively. Both of these
functions were found to vary slowly with time. Figure
1(a) shows A4,(t) with a driving frequency 0w =637 sec™ !,
and A;=1.4g where g is the acceleration of gravity.
Note that the time scale for the changes in 4,(¢) is much
longer than the time scale for the oscillation itself. The
power spectrum [shown in Fig. 1(b)] of this time series
shows a power-law region with exponent =~ —2 at fre-
quencies from 107 ° to 10~ ! Hz.

On time scales of the order of a few oscillations, how-
ever, the amplitude at a given driving frequency is fixed.
This inspired a second set of measurements using the
same experimental setup. With a fixed acceleration for
the driving force, the amplitude of the detector is mea-
sured for various values of w. Let the response function
Nw)=A,/ A, for a driving frequency w. This ratio is
plotted as a function of ® in Fig. 2. The two curves
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FIG. 1. Experimental results for the amplitude of a bead at a
single driving frequency: (a) shows the amplitude (in units of g)
as a function of time, (b) is the power spectra for this time trace.
The bead is a distance of 4 cm from the driving plate. The dot-
ted line has slope of —2. (Data reproduced with permission of
the authors of Ref. [10]).
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FIG. 2. Experimental results for the frequency response of a
bead as a function of driving frequency. The bead is again a dis-
tance of 4 cm from the driving plate. The two curves result
from successive measurements on an undisturbed system. The
second curve is displaced downward so that the two are distin-
guishable. (Data reproduced with permission of the authors of
Ref. [10].)

shown were done in consecutive sweeps through the fre-
quency range where the measurements are separated by a
short interval of time. The second curve is displaced
vertically downward so that the two curves can be dis-
tinguished. If the sample was disturbed between the mea-
surements, the response curve looked very different for
the second scan of the frequency range. Thus, while the
data looks “‘noisy,” the response is actually characteristic
of the particular contact network of the sample. Thus,
Fig. 2 gives information about a static force network in
the bead pack. Figure 1, on the other hand, results from
the time evolution of this network.

In the rest of this work, I present the details of a ball
and spring model for the bead pack and present numeri-
cal results for a direct comparison between the model sys-
tem and the experimental results. I also study the role
that the system’s normal modes play in the frequency
response. The rest of the paper will be organized as fol-
lows. Section II contains a discussion and motivation for
this model of a granular system. In Sec. III, I will consid-
er the continuum limit of this model and examine the
solution to the differential equations which describe a
homogeneous system. Section IV presents the numerical
solution of the discrete model, and compares these results
with the frequency response seen in the experiment. In
Sec. V, I present a toy model for the slow amplitude
modulations which are a result of the relaxation of the
force network. Finally, in Sec. VI, I summarize and dis-
cuss extensions to this simple model which must be made
to capture more of the physical characteristics of the real
system.

11I. BALL AND SPRING MODEL

Consider the bead pack at equilibrium. In this experi-
ment, the only important forces acting on each bead are
the contact forces between adjacent particles and gravity.
The collection of contact forces among neighboring beads
will be referred to as the contact force network, and the
force between two connected beads will sometimes be
called a “bond.”

The fundamental unit of this network is the bond be-
tween two spheres. If two spherical beads are
compressed together with a contact force F,, then under
the action of this force the distance between the centers
of the two spheres is decreased by an amount 4. For the
case of linear elasticity and perfectly smooth spheres,
these two quantities are related by

F.=kh?, Q.1

where k is a proportionality constant depending on the
radii of the two spheres and their material properties
[11]. For the case of an almost monodisperse collection
of beads, this constant k can be treated as the same for all
contacts.

Consider now an additional force 8F acting on these
two balls. The spheres will move together by an addition-
al amount k4. Under this new force, Eq. (2.1) becomes

F.+8F=k(h +8h)**. 2.2)

For the case of small 8k, I can expand the expression in
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parenthesis and, making use of Eq. (2.1), I find

172
55— 3k

6h =K, 6h , (2.3)
where K, is a constant which depends on the equilibrium
stress on each bond in the network. Equation (2.3) shows
that for a sufficiently small displacement &4 the bond be-
tween a pair of connected beads acts like a simple spring.

Unfortunately, (2.3) is not true for all bonds. There
may exist some beads which in equilibrium are very close
to each other, but are not in contact. However, under the
action of 8F these beads do come into contact. The ex-
perimental results indicate that this is not an important
effect in understanding the response of the system. These
contacts produce a force that only acts during part of the
oscillation cycle. If this effect were important, then the
response of the accelerometer would not be sinusoidal,
but would take on some more complicated wave form.
Thus, in order to understand the experimental results de-
scribed above, I will not consider these ‘“sometimes”
bonds.

Finally, one might object to the use of Eq. (2.1) on the
basis that it ignores the effect of the surface roughness of
the beads. However, the essential idea is that for small
oscillations the contact will behave like a spring, and this
does not depend on the fact that the contact is Hertzian.
In order to do the expansion for small 64, all that is need-
ed is analytic behavior near equilibrium. The dependence
then of K, on the equilibrium configuration may be very
complicated; however, I will not need the exact form for
K, in this study.

In terms of the response to small oscillations, the sys-
tem can then be viewed as a collection of balls connected
by springs, with the spring constants determined in some
way by the force network of the equilibrium system.
When the amplitude of a ball changes as a function of
time, this indicates that the equilibrium configuration of
the system has changed —the network has relaxed. The
experimental results then raise some very interesting
questions: What information about the force network is
reflected in Figs. 1 and 2? How does the network relax in
time? What is the role of the geometrical disorder in the
system? These are the questions that I address in this
study.

I focus on an extremely simple model for the system.
For computational ease, I consider a network embedded
in two spatial dimensions. I ignore the positional disor-
der of the grains, and consider the network topology to
be that of a square lattice. I choose a velocity-dependent
dissipation with a uniform damping constant. The only
disorder present in the system is in the distribution of
spring constants, K,. This paper will compare the
response of this model system to the response observed in
the experiments.

I now present the mathematical formulation of this
ball and spring model. Consider the beads, confined to a
two-dimensional square lattice as in Fig. 3. I let the driv-
ing force be a sinusoidal motion of one entire wall. The
sheering of two grains in contact with each other will
produce dissipation in the system. I choose to include
this behavior in the simplest possible way by assuming an

FIG. 3. Basic ball and spring model for the system. The wall
on the right oscillates to provide the driving force.

interparticle damping force that is linearly dependent on
the velocity difference between two adjacent beads. The
final simplification comes from an assumption that the
motion is decoupled in the x and y directions. This will
be true in the limit of very small oscillations.

In this model, the displacement u (p) of a bead at posi-
tion p =(x,y) is given by the differential equation

mdup) 21(,,(pp)[u(p) u(p)]
+38 L;f’— —“1] 2.4)
>

where m is the mass of a ball, p’ is a nearest neighbors to
point p, B is the damping constant, and K,(p,p’)
=K, (p’,p) is the spring constant between p and p’.

For boundary conditions, I take that u(p)=0 on all
walls that do not supply a driving force. For the oscillat-
ing wall, I have the form u (p)=exp(iwt), where, without
loss of generality, I have taken the amplitude of the wall’s
vibration to be unity.

It is possible to take Eq. (2.4) as the starting point for
numerical investigation by merely integrating this equa-
tion to find out the response of each ball as a function of
frequency. However, this does not take advantage of the
fact that for small amplitude vibrations, the harmonic
driving force produces harmonic motion of the particles
in the bead pack. Thus, I know that the solution of in-
terest takes the form u (p)= A4 (p)exp(iwt), where 4 (p) is
the complex amplitude for the vibration at point p. Com-
bining this with Eq. (2.4), I find

mo*A(p)+ 3 [K,(p,p')+ioB][ A(p')— A(p)]=0 .
<
2.5)

The boundary conditions for this equation are that
A (p)=0 on the three fixed boundaries, and that 4 (p)=1
on the oscillating wall. This equation described the
steady-state response of this ball and spring model. To
find the frequency response for a given system, it is neces-
sary to know the values of K, (p,p’).



1650

III. THE CONTINUUM SYSTEM

If I consider the case of infinitesimally small particles
(i.e., the continuum limit), it is possible to rewrite Eq.
(2.5) in terms of a differential equation. The resulting
equation can be solved exactly for the case of a uniform
spring constant. Letting K, (p,p')=K, for all p and p’, I
write A(p) as A (x,y) and consider a box with x and y di-
mensions L, and width L, respectively. For such a sys-
tem, (2.5) becomes

p’? A (x,y)+(Ky+ioB)V? 4 (x,y)=0, (3.1

where p is the mass density. The boundary conditions for
this equation are A(L,,y)=1 and A4(x,0)=4 (x,Ly)
= A(0,y)=0. The solution to this equation, with these
boundary conditions, can be obtained by standard separa-
tion of variable techniques, and I find

sin[(2n +1)my /L, ]
(2n +1)

sinh(a,x /L, )

sinh(a,,)

’

4 =
A s _
& y) m néO

(3.2)

where a,, is defined by

2
a2 /L=(2n +1772 /L) — L2

Ko tioB ° (3.3)

It is very simple to sum this series numerically, and
find the amplitude as a function of frequency for any
point in the box. All that is necessary is to choose values
for the parameters p, K, B, L,, and L, In the solutions
shown here, I choose p=1, Ky=1, L, =Ly=1 (this
defines a system of units in which o is dimensionless).
Figure 4 shows the frequency response at (x,y)
=(0.47,0.53) for two different values of 8. In Fig. 4(a), I
show the results for =0. There is a set of frequencies
where the amplitude at (x,y) is peaked, and is much
greater than the amplitude of the driving wall. Addition-
ally, there are frequencies at which the amplitude jumps
discontinuously. The frequencies @, at which these
peaks and discontinuities occur are well described by the
expression

or =7 n?+(2n,+1)],

2 (3.4)

where n, >0 and n, >0 are both integers. The frequen-
cies defined by (3.4) are shown in Fig. 4(a) by the pluses
located on the x axis.

The importance of these frequencies can be understood
in two ways. The first comes from a direct examination
of (3.2) and (3.3). At 0=0, (and f=0), the value of
a,,=n,mi. For this value of a,, the function sinh(a, )

vanishes, and the contribution from the n =n, term in
the series (3.2) goes to infinity.

However, the frequencies of (3.4) also correspond to
natural frequencies of the unforced system. Let =0 and
A(L,,y)=0. In this case, Eq. (3.1) becomes an eigenval-

ue problem, and the eigenfunctions, f;(x,y) are
filx,y)=sin(q,mx /L, )sin(q,my /L,) , (3.5)

with the corresponding eigenvalues w? given by
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FIG. 4. Frequency response of the homogeneous system: (a)
shows the response of the system with a damping coefficient
B=0; (b) shows the response with damping coefficient =0.003.
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where again g, >0 and g, >0 are both integers. Not all
eigenfrequencies given by Eq. (3.6) are manifested in the
system. This is due to the symmetry of the driving
force—it is symmetric about a horizontal axis at the
center of the box. This excludes all of the eigenmodes
which are asymmetric about this axis (i.e., have an even
value for g,).

Figure 4(b) shows the response for a finite value of the
damping coefficient, $=0.003. The frequencies defined
by (3.4) are again shown as pluses along the x axis. There
are two differences between this response curve and Fig.
4(a). The first is that there is an overall decrease in
response as the frequency increases. This reflects the fact
that the damping force is proportional to w, and thus the
damping force gets larger at higher frequencies. By look-
ing at a larger range in frequency, it is clear that this
trend is nothing as straightforward as a simple exponen-
tial decay.

The second interesting feature is the set of peaks and
valleys which are superimposed on this decreasing
response curve. The lowest-frequency excitations are still
identifiable as distinct entities with peaks clearly occur-
ring at the resonance frequencies. The higher-frequency
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modes, on the other hand, cannot be distinguished in the
response curve. The finite value of the damping term
causes the resonance peaks to be greatly decreased in
magnitude, and to be much broader in terms of their fre-
quency response. At higher frequencies, many broad
peaks are superposed to get the measured response of the
system. It is the inhomogeneities in the distribution of
these resonances that cause the apparent small peaks and
valleys at high frequencies. At even higher frequencies,
the effects of the damping become dominant, and the
curve becomes smooth.

This is indeed reminiscent of the frequency response in
the experimental system. There is a general trend of a de-
creasing amplitude with increasing frequency, with peaks
and valleys superimposed on this decreasing curve. In
the experiments, these oscillations are much more strik-
ing than in this uniform system, but the character of the
response is the same.

1V. THE DISCRETE MODEL

I now study Eq. (2.5) numerically, looking at the prop-
erties of the solution for a particular distribution for the
values of K, (p,p’). Such a computational study involves
a discrete rather than a continuum system. For the case
of a square lattice, the amplitude 4 (p) becomes A (i,j),
where i indicates the x coordinate of a ball, and j the y
coordinate. Equation (2.5) then becomes

mao* A, )+ 3 (K, ji',j") +iop)
(ij")
X[AG',j')— A(i,j)]=0,

where (i’,j') are nearest neighbors to the ball at (, ), and
K, (i,j,i’,j') is the spring constant for the bond connect-
ing these two balls. The boundary conditions for the sys-
tem are

AN+1,j)=1
A(0,j)=A(i,0)= A (i,N +1)=0

4.1)

4.2)

The first equation represents the driving wall, while the
final three are for the fixed walls.

The method that I use to find the solutions of Eq. (4.1)
is the biconjugate gradient method [12]. This method
determines solutions to a matrix equation of the form

(4.3)

by finding the minimum of the function g(x)=1xMx
—bx. In order to transform Eq. (4.1) into the form of
(4.3), it is necessary to write (4.1) as an equation for its
real and imaginary parts. As a result, the matrix M is not
symmetric, and this is why the biconjugate, rather than
the conjugate, gradient method must be used. In my
simulations, the amplitude for each point is accurate to 1
part in 10 000.

It is, of course, possible to simply invert the matrix M
to find the solution. Unfortunately, the amplitude A4 (i, )
depends on the value of the frequency, and thus, for each
value of w a completely new matrix inversion must take
place. Because the amplitude has a real and imaginary

part, the matrix M which describes a 20X20 system of
balls is an 800X800 array. The biconjugate gradient
method, on the other hand, takes advantage of the
sparseness of this discretized-Laplacian type matrix, and
the solution can be achieved to the desired accuracy in a
much shorter period of time. All of the calculations for
the results shown in this paper were done using a Sun
SPARCstation IPX using approximately 150 h of CPU
time.

All that remains is to choose a distribution for the set
of {K,(p,p’)}. For simplicity, I take a random distribu-
tion of values on the interval [0,K ., ]. The results that I
show are for a square array of balls of size 20X20. Fig-
ure 5 shows the spring configuration for the array that
has been used for the results presented below. Black indi-
cates that K, =K .., while white means K, =0, with a
linear gray scale for intermediate values.

I choose K, =0.25, B=0.002 and measure the
response in the frequency range »=1(0.01,1.3). I shall
show below how to assign physical units to these quanti-
ties. Figure 6 shows the amplitude for a ball near the
center of the pack of the springs (the precise position of
the ball is indicated in Fig. 5).

There are three distinct regimes of behavior. At very
low frequencies [Fig. 6(a)], the behavior is very similar to
the response seen at low frequencies in the continuum
case. There are frequencies at which peaks occur, and
these peaks show little overlap.

In the intermediate frequency range [Fig. 6(b)], the
response of the system is qualitatively the same as that
shown in the experimental results of Fig. 2. There is an
overall decrease of the response, and an irregular set of
peaks and valleys.

For o > 1 [Fig. 6(c)], the response becomes very smooth
and decreases very quickly. The change in response at
w=1 can be understood intuitively. Consider a single
ball attached to four springs all with K, =K ... Such a

""""""I"&l"".
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FIG. 5. The 20X 20 ball and spring system used for these
simulations. The intensity indicates the strength of the bond
connecting two balls: black indicates that K, =K ,,,, white indi-
cates K, =0, with a linear gray scale for intermediate values.
The large black ball at (8,10) indicates the location where all of
the measurements occur.
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ball will have its fundamental excitation at a frequency
mmax = ‘/4Kmax /m (4'-4)

This then is the “natural” frequency (known as the Ein-
stein frequency [13]) for a ball which, by chance, happens
to be surrounded by springs all of which have K, =K ..
Equation (4.4) then defines the highest frequency at
which any bead will naturally oscillate. Any higher-
frequency oscillations would require every neighbor to vi-
brate in opposition with many of its neighboring parti-
cles. Below it is shown that this results in a distinctly
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FIG. 6. Frequency response of ball at (8,10) as a function of
frequency: (a) for low frequencies; (b) for intermediate frequen-
cies; and (c) for high frequencies. The pluses along the x axis in-
dicate the frequencies of the normal modes.
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different character to the system’s oscillations.

For the values of K., and m given above, w,,=1.0.
For other simulations, with different values for K ,,, I
found that this drastic change in the response of the sys-
tem occurred at the frequency given by Eq. (4.4). This
frequency determines the frequency scale for the system,
and I will consider my frequency as measured in units of
®., Experimentally, o, might be measured by finding
the frequency at which this rapid decrease in the response
occurs. It is also possible to estimate a lower limit for
Oy in the experimental system by assuming the Hertzi-
an contact law and that contact force between any two
beads is not significantly greater than the weight of a sin-
gle bead. Making use of some of the information about
the beads given in Ref. [10], and Egs. (2.1), (2.3), and
(4.4), I find that

Opmax > 45000 sec ™!, 4.5)

which is above the observed range in the experiment.

Consider now the phase of a given ball in the array.
Figure 7 is a plot of the phase versus frequency for the
same ball as was used in Fig. 6. Again there is distinctly
different behavior for o > w,,. There is also a linear re-
gime in the phase for 0.3w,,, <® <®,,, A linear rela-
tionship between the observed phase and the driving fre-
quency is seen experimentally [14]. A simple calculation
shows that for a constant group velocity vy, the relation-
ship between the frequency of the oscillation and the ob-
served phase at a point should be linear. If the magni-
tude of the slope in the phase response curve is y, then
the group velocity is given by

v, =X/u, (4.6)

where X is the distance from the source of the driving to
the point of observation. In the data shown here, the
value of X is 12 particle diameters. In the experimental
system, the particle diameter is 0.5 cm. Using this value

and the slope from Fig. 7, I find that
Ve =0.030,,, » 4.7)

where w,,,, is measured in sec ™!, and the group velocity

S0.00 T

000 ~—\_{,LL\\

S50.00 .

-100.00

0 (radians)
J

130.00

—

20000 S 1 i - i o
000 0.20 0.40 0.60 080 100 120 1.40

(D/O)nlilx
FIG. 7. Phase of a single ball for all driving frequencies.
There is a linear regime in the intermediate frequency range.
The pluses along the x axis mark the frequencies of the normal
modes.
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is given in units of cm/sec. In the experimental system,
v, =57 m/sec. Matching to that velocity implies that
..., ~200000 sec”!,

max

4.8)

which is clearly beyond the experimental regime. With
this value of w_,,,, Fig. 6 indicates that the typical change
in frequency between the very large drops in the response
is Aw~10000 sec~!. This compares with the experimen-
tal value which is quoted as Aw =~ 3000 sec ™!

The parameters m and K,_,, determine the value of
®pa through (4.4). The only parameter whose effect I
have not discussed is the damping constant 8. The value
observed for p depends sensitively on the value chosen
for B. If a smaller value for B is chosen, the value of u is
increased. Additionally, a smaller B results in many more
small peaks in the frequency response data, but the sharp
decreases are much shallower. If, on the other hand, the
value of B is increased, the sharp decreases in the
response are much deeper, but they occur with a much
larger spacing in frequency. The effects on the peaks can
be understood by considering the results from the normal
mode analysis below.

Because the normal modes proved to be so important
in the response of the continuum system, I consider their
manifestation in the discrete case. I again use the spring
configuration of Fig. 5. Because there are 20X20 balls
that are free to move this will produce 400 eigenmodes
for the system. The normal modes are calculated for the
undamped system with the zero amplitude boundary con-
ditions at all walls. These calculations were done using
the appropriate subroutines from EISPACK.

The easiest way to see that it is the normal modes of
the zero amplitude boundary condition that determine
the system behavior is to consider the much simpler sys-
tem of a string driven at one end by a sinusoidal vertical
displacement sin(wt). Assuming that the horizontal vi-

brations can be written as y(x)sin(wt), then the
differential equation for y (x) is
d 2y (x) 2
———+ky=0, 4.9)
dx? Y

where « is related to the elastic properties of the string
and the driving frequency. If the driving occurs at x =L,
then boundary conditions are y (L)=1 and y (0)=0. The
solution to this equation is y(x)=Ysin(kx) where
Y =1/sin(kL). The value of Y becomes very large as the
value of « approaches nw/L, where n is the positive in-
teger. These are exactly the eigenvalues of the zero am-
plitude boundary-value problem. At these frequencies,
the solutions also take on the form of the corresponding
normal modes.

Figure 8 shows three eigenmodes for the system. The
first one is the second lowest-frequency mode of the sys-
tem, and shows little trace of the local nonuniformities of
the network. The second mode is in the middle of the
spectrum at ©=0.6053w,,,,. The picture shows that the
oscillation is partially, but not completely, localized. The
final mode shown has o =1.000w,,,,, and there is striking
localization of this mode. This is true of all the modes at
high frequency, and this is the reason for the significant

change in the response function at driving frequencies
with © > @,,,.

These normal mode frequencies are shown as pluses in
Figs. 6 and 7. Notice, as in the continuum case, that at
low frequencies the sparseness of the normal mode allows
them to be observed as distinct excitations of the system.
At higher frequencies, however, the modes overlap and
there can be no one-to-one identification between the
structures in the response and a given normal mode.

Note also that the density of modes becomes very low
for frequencies greater than w~wp,,. From the results
for low frequencies, this would seem to suggest that these
modes should be seen distinctly in the response curve.
However, because these modes are highly localized, they
will only be seen in the response if the detector happens
to be inside the region of space where the mode has a
nonzero value.
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FIG. 8. Typical modes for the system in three frequency
ranges: (a) ©0=0.1013w,,,; the mode is extended; (b)
©=0.6053w,,,,; the mode shows some localization; (c)
©=1.0000,,,,; the mode is very localized.
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The major difference in this nonuniform system is that
not all modes will contribute equally to the system’s
response. A high-frequency mode which has its ampli-
tude localized far from the driving wall is much less im-
portant than a mode which is localized near the driving
wall. Thus, not only are the functional forms of the nor-
mal modes more complicated, it is also important to
know which modes make the dominant contributions at
each frequency.

In order to measure the contribution of each mode to
the system response, I use the set of normal modes as a
set of basis vectors to describe the amplitudes of the balls
at each driving frequency. At a given driving frequency
w, the amplitude of the oscillations can be written as a su-
perposition of the eigenmodes,

NXN

A(i,j): 2 Ckfk(i,j) ’

k=1

(4.10)

where in this case both i and j can only take on values be-
tween 1 and N. The coefficients ¢, are given by

N N
a=3S S AG)f)) . 4.11)

i=1j=1
Note that the sums over i/ and j do not include the boun-
daries but only the sites interior to the system. The c;’s
then give the contributions of each normal mode to the
oscillations inside the system.

With the modes calculated numerically, it is a simple
matter to calculate the values of ¢, for each driving fre-
quency. Figure 9 shows the values of the |, | versus o,
at a driving frequency 0 =0.6w_,,. While it is clear that
the most important contributions come from the modes
that have o, =, the structure of the curve is complicat-
ed. It is also clear that the level of a modes excitation is
not simply determined by the value of |0 —®,|.

There are, however, some general patterns to these
¢;’s. Figure 10 shows the frequency of the mode that has
the largest value of |c,| at each driving frequency. This
is a linear function with slope 1, and indicates that the
most important mode is one which has its resonant fre-
quency near the driving frequency. Again, it is clear that
the behavior sharply changes at o = wp,,.

Finally, I consider the c,’s for several eigenmodes
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FIG. 9. Values for the |c,|’s as a function of the mode fre-
quency w;. The driving frequency is @ =0.6w,,-
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FIG. 10. The most important modes. This figure shows the
value of w; versus the driving frequency w for the mode which
has the largest value of |c,| at each value of the value for .
Note that above w=wy,,, the linear behavior starts to break
down and the curve becomes very irregular.

which have their frequencies very close together. Shown
in Fig. 11 are the values of the |c,| as a function of fre-
quency for three modes with a resonance frequency near
0=0.6w,,,. Each curve shows a clear resonance
behavior when the driving frequency approaches its natu-
ral frequency. However, it is clear that each mode is ex-
cited to a different degree by the driving force.

As was stated above, it is possible to understand the
changes in the response curve as the value 8 is changed
by considering the normal mode. When the value of S is
decreased, each of these modes will have a much sharper
peak in its ¢, when the driving frequency approaches the
mode’s natural frequency. Thus, any mode which has a
nonzero contribution to the amplitude at the detector is
more likely to make its presence felt. Thus, there are
many more smaller peaks in the measured response.

V. TOY MODEL FOR RELAXATION

Because (2.5) is a steady-state solution for fixed w, there
will be only one amplitude measured for all time. I have
allowed for no relaxation of the lattice which is the
source of the behavior in Fig. 1. As a toy model for this
relaxation process, I consider the amplitude at one point,

| o= .6053m

| o, = .6064®

max

max

max

-2.50 - -
000 0.20 040 0.60 0.80 1.00 1.20 140

0/ _
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FIG. 11. The value of |c,| as a function of the driving fre-
quency o for three successive modes of the system.
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while randomly changing one bond per unit of time 7.
This bond is assigned a new random value between 0 and
K .- Having changed one of the values of K, I then
find the new solution of (2.5). This new solution has a
different value for the observed amplitude, and by plot-
ting this as a function of elapsed time, I generate a time
sequence. I then compare the power spectra of this series
to the experimental power spectra.

I begin the simulations with the same bond
configuration as shown in Fig. 5, and measure the ampli-
tude of the same ball as I used for the frequency data.
The system is driven with an oscillation of frequency
©=0.60,,,, with a value of B=0.01. The amplitude of
the vibration as a function of time is shown in Fig. 12(a).
Using a much longer time series, I can calculate the
power spectrum, S (f), for this time series [15], with the
results shown in Fig. 12(b). There is a clear power-law
behavior in the power spectrum. If the power spectrum
is written as S(f)~f ¥, I then find that ¥=~1.9 over a
region of one and a half decades. This is fair agreement
with the experiments, which find values for ¢ between 2
and 2.2.

It is not surprising that =2 in both the toy model and
the real system for the following reason [10]. Imagine
that at one time the amplitude of the detector has some
value B, and then one of the bonds is changed. This will
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FIG. 12. Results for the time trace of the amplitude as the
bond network is changed: (a) is a sample of the time trace data;
(b) shows the corresponding power spectra. A line with slope
—2 is shown for comparison.

either raise or lower the observed amplitude by AB,, and
I might expect, in general, that the change might be
equally likely to cause an increase as a decrease. Then
another bond is changed, and the amplitude changes by
some amount +AB,. In this picture it is clear that the
amplitude is executing a random walk. Such a time trace
is known to have a power spectrum with an exponent
¥=2. Thus, the power-law behavior is not surprising,
and the exponent near 2 seems to be intuitive.

There are, however, several assumptions in this argu-
ment which are unjustified. Are B and AB actually un-
correlated? Are successive values for AB uncorrelated?
In order to understand the experimentally observed re-
sults, a more physically motivated process for the net-
work relaxation is necessary.

VI. CONCLUSIONS AND DISCUSSION

The principal objective of this paper is to show that the
vibrational properties of a granular material can be
reproduced with a simple linear ball and spring model. I
have been able to reproduce qualitatively the frequency
response of a single grain to a sinusoidal driving frequen-
cy. There is as yet no way to make a quantitative com-
parison with experiments, because there is no well-
defined method for characterizing the statistical proper-
ties of the “noisy” response curve. The normal-mode
analysis indicates that the peaks in the spectrum cannot
be associated on a one-to-one basis with a resonance of
the system; however, it is clear that the behavior at a
given frequency is a result of a superposition of the nor-
mal modes which have their resonance frequencies in the
regime of the driving frequency. The toy model for the
relaxation of the lattice does reproduce a power law in
the behavior in the power spectrum. The fact that the
model is simple, and yet produces the experimentally ob-
served behavior, suggests that it may be worth studying
in its own right.

One obvious simplification of this model is its two-
dimensional character. It is not clear how things will
change in three dimensions. The properties of localiza-
tion are known to depend on dimensionality [3]. The
computational difficulty with examining the three-
dimensional case simply comes from the size of the ma-
trices involved (e.g., a 10X 10X 10 set of balls would re-
quire the inversion of a 2000X 2000 element matrix for
each value of ).

However, there is another more fundamental aspect of
the real system that cannot be studied with this simple
ball and spring model —the experiments show an extreme
sensitivity to thermal fluctuations. In additional mea-
surements, Liu and Nagel place within the sample a small
heater the size of a single bead, and they run a heat pulse
through it [14]. The pulse changes the temperature of
single bead by approximately 0.8 K, and they find that
the response of the distant accelerometer changes almost
instantaneously by 25%. The effect of the change in tem-
perature is to change, by thermal expansion, the size of
the beads in a region near the heater. The change in ra-
dius of the bead is estimated at 1000 A. In order to un-
derstand these temperature effects, a much more physi-
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cally motivated model is needed for the granular system.

Another defect with the current model is that it does
not allow for a general topology for the force network.
Also, the spring constants are clearly determined by the
different equilibrium forces on the beads. However, there
is no requirement that these forces sum to zero, as they
should in equilibrium. This problem can only be solved
by choosing a specific form for the force law between
touching spheres. Once these problems are solved, it
would be straightforward to study the effects of local
thermal fluctuations.
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FIG. 3. Basic ball and spring model for the system. The wall
on the right oscillates to provide the driving force.
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FIG. 5. The 20X20 ball and spring system used for these
simulations. The intensity indicates the strength of the bond
connecting two balls: black indicates that K, =K .., white indi-
cates K, =0, with a linear gray scale for intermediate values.
The large black ball at (8,10) indicates the location where all of
the measurements occur.



